Internationalizing date-time API consistent with the Earth, Moon, and leap seconds

Jim DeLaHunt • jdlh.com • IUC44 • 15 October 2020

Earth, Moon, and abolishing leap seconds

...the curious astronomy and politics of time()

Introduction

- Jim DeLaHunt
- http://jdlh.com, ロ +1-604-376-8953
- Vancouver, Canada
- Consultant in multilingual websites; software engineer
- Slides: http://go.jdlh.com/iuc44s5t1 (has links)

Questions about time and calendars

- How long is a day?
- How long is a year?
-When does a minute have 61 seconds?
- How does Posix time conflict with UTC?

How long is a day?

- Are days longer in summer, shorter in winter?

How long is a day?

- Always the same length: from sunup to sundown

How long is a day?

- Always the same length: from sunup to sundown
- Oh, you want fixed-length units of time?

How long is a day?

- Always the same length: from sunup to sundown
- Oh, you want fixed-length units of time?
- 24 hours $\times 60$ minutes/hour $\times 60$ seconds/minute $=86,400$ seconds

How long is a day?

- Is this thing related?
- How long from one sunrise to the next?
- 86,400 seconds?
- Same every day?

The map is not the territory

- "Day" originates from observing the Sun
- 1 day $=86,400$ seconds every day is a model
- Observed day is the prototype of the model
- A model often resembles its prototype, but is not the same as the prototype
- Differences of model-prototype can be wacky

How is this related to $110 n$ and $i 18 n ?$

- Localisation: fit product to reality of new market
- Internationalisation: models which make IIOn easier, cheaper
- Beware of being blinkered by your models
- Human reality is complex, weird
- Writing systems, names, time

time() and struct tm

- Python, Unix, etc. \Leftarrow POSIX $1.2008 \Leftarrow$ C lib
- \Leftarrow Pope Gregory, 500 years ago
- time_t time(time_t *tloc)
-""time in seconds since Epoch" [00:00 1 Jan 1970 UTC]
- struct tm *gmtime(time_t *t), localtime(...)
- "convert time since Epoch... into a broken-down time, expressed as UTC"

time() and struct tm

| tm struct in <time.h> | | | |
| :--- | :--- | :--- | :--- | :--- |
| int | tm_sec | Seconds | $[0,60]$ |
| int | tm_min | Minutes | $[0,59]$ |
| int | tm_hour | Hour | $[0,23]$ |
| int | tm_mday | Day of month | $[1,31]$ |
| int | tm_mon | Month of year | $[0,11]$ |
| int | tm_year | Years | since 1900 |
| int | tm_wday | Day of week | $[0,6]$ Sunday $=0$ |
| int | tm_yday | Day of year | $[0,365]$ |
| int | tm_isdst | Daylight Savings | Flag |

time() and struct tm

- 4.16 Seconds Since the Epoch
- actual time of day vs seconds since Epoch: "unspecified"!
- each... day shall be... "exactly 86400 seconds"
- time_t $t=t m_{\perp} \sec +t m_{_} \min ^{\star} 60+$ tm_hour* $3600+$ tm_yday* $86400+$ $\left(\right.$ tm_year-70)* $31536000+\left(\left(\right.\right.$ tm_year_-69)/4)*86400 $-\left(\left(t m _y e a r-1\right) / 100\right) * 86400$ $+(($ tm_year +299$) / 400) * 86400$

How long is a day?

- 1. November, 2020
- In California?
- In Yukon?

Map of North America including states and provinces, by Kaldari and Halava, cc-by-sa

How long is a day?

- 1. November, 2020
- In California?
- 25 hours
-"Fall back" to Standard time
- In Yukon?
-

How long is a day?

- 1. November, 2020
- In California?
- 25 hours, "Fall back" to PST:
- In Yukon?
- 24 hours
- Not leaving daylight savings time
- UTC-7 from now on

Time zone and Daylight Savings data

- Time zones and Daylight Savings time changes are human and political constructs
- They change
- IANA Time Zone Database
- Was: Olson Database

Time zone rules are evanescent

Source: https://tzdata-meta.timtimeonline.com/

Seconds, days, and years

- Keeping track of seconds is timekeeping
- Keeping track of days and years is calendaring
- "A calendar is a system of organizing days."
- Two big things for a calendar to keep track of...

Two big things for a calendar to track

Sunrise in Florida, by Surge123. CC-BY 3.0.
Waxing half moon over Brofjorden, by W.carter. CC0.

Sun and moon

- Moon
- "new moon", between Earth and Sun, mostly dark
- 29.5-day cycle approx
- Sun
- March equinox, September equinox, solstices
- 365.24-day cycle approx
- Governs agriculture, so important

Sun, Earth, Equinox, Solstice

Orbital relations of the Solstice, Equinox \& Intervening Seasons, by Colivine. CCO.

Indentify equinox with ancient tech

- Sundial, upright rod
- Plot shadow of rod tip
- On equinox, plot is a straight line

Fun with calendars

- Astronomy: 365.0-365.3 days/year
- Tropical year, observed, March equinoxes
- Synodic months, conjunction Moon-Sun
- Source: Urban \& Seidelmann, Explanatory Supplement to the Astronomical Almanac
- 3rd Ed. (uscibooks.com)
- (archived summary)

Fun with calendars

- Julian: 365 (366) days/year.
- Lost sync with solar year in year 45, 1580s
- Gregorian: 365 (366) days/year
- Established 1582, to resync with solar year
- 400-year cycle with 97 leap years

Fun with calendars

- Solar Hijri ("Iranian"): 365 (366) days/year
- Starts on observed March equinox
- Add leap day if equinox not yet arrived
- (approx every 4-5 years, on 33-, 29-, 37-year cycles)
- Jalali: 365 (366) days/year
- Predecessor to Solar Hijri, based on Hindi roots
- Months on observed solar movement, 29-31 days

Fun with calendars

- Lunar hijri ("Islamic"): 354 (355) days/year
- Purely lunar, month starts based on observation
- Shifts through solar year
- 30 year-cycle, 11 leap years
- Hebrew: $353,354,355(383,384,385)$ days/year
- Lunisolar, but calculated not observed
- 19 year cycle, of which 7 have 13th month

Fun with calendars

- Chinese: $353,354,355(383,384,385)$ days/year.
- Timed by observation of moon and sun
- 12 or 13 months per year.
- 60 year cycle
- Indian: 365 (366) days/year
- Since 1957, aligned with Gregorian calendar

Two big things for a calendar to track

Sunrise in Florida, by Surge123. CC-BY 3.0.
Waxing half moon over Brofjorden, by W.carter. CC0.

Time standards

- TAI: pure linear count of SI seconds, atomic clocks
- UT1: universal time, mean solar time at $0^{\circ} \mathrm{W}$.
- UT1 days are not 86,400 Sliseconds long
- GPS: TAI - 19 seconds

Deviation of day length from 86,400s

1970
2015

Time standards: UTC

- UTC: coordinated universal time
- Same SI seconds as TAI (constant duration)
- Within 1 seconds of UT1 (solar time)
- Add leap seconds to keep UTC close to UT1
- Integer number of SI seconds behind TAI (now: 37s)
- UTC shows: humans choose the reality of solar position over the perfect model which is TAI

Leap seconds

- Last minute of 30 June or 31 Dec UTC
- As needed, per Int'l Earth Rotation... Service (IERS)
- Makes the last minute have 61 seconds on some days
- Clock reads "23:59:60"
- 27 leap seconds in 49 years (1972-2020)

Leap seconds and time()

- Recall, 4.16 Seconds Since the Epoch
- actual time of day "unspecified"!
- each... day shall be...."exactly 86400 seconds"
- POSIX (Std C) punts the leap second
- To be fair, tm_sec does allow $[0,60]$
- Also, time() assumes drifting system clocks
- Leap seconds are less severe than the drift

Leap seconds and time-critical tasks

- Some time-critical automated tasks
- Computing, finance trading, automation
- Increasing time accuracy: ms, ns
- Unpredictable leap seconds are a problem
- No good system for advance notice of leap seconds
- 23:59:60 UTC is during work hours (some timezones)

Proposal: abolish leap seconds

- Debated 2005-present, not resolved
- Case for abolishing
- Problems for highly precise time-critical work
- Poor POSIX support for leap seconds
- Poor distribution of leap second advance notice
- Having multiple timescales is confusing

Proposal: abolish leap seconds

- Case for retaining
- Time-critical tasks, use TIA instead of UTC
- Use better time sync than Network Time Protocol
- Leap second << 1 hr daylight savings time change
- If no leap seconds, then calendar drifts out of sync with solar year

Meditation on time scales

- 3 goals, pick any 2
- Precise time (or rather, stable precise frequency)
- Simplicity (e.g. 86,400 seconds = 1 day)
- Connection to solar days and solar years
- Advocates pick their goals, disregard the other
-Why not multiple time scales?
- Adapted from Plots of the time dilemma, Steve Allen

Time to return to lion and i18n

- Localisation: fit product to reality of new market
- Internationalisation: models which make I10n easier, cheaper
- Human reality is complex, weird
- Writing systems, names, time
- Also timekeeping and calendars

Time to return to l10n and i18n

- Humans can't resist the solar day and year
- Precise, simple, solar-connection: pick any 2
- Beware of being blinkered by your models
- Know when it's time to create a new model
- Be ready to advocate for reality over the model

Thank you!

- Q\&A
- Slides: http://go.jdlh.com/iuc44s5t1.

Internationalizing date-time API consistent with the Earth, Moon, and leap seconds

Jim DeLaHunt • jdlh.com • IUC44 • 15 October 2020

